Derivation II

Prof. Joseph Pentangelo
Ling 350: The Structure of Words
14 March 2024

1. The following are simplified forms of several words in Kanien'kéha (a.k.a. Mohawk), an Iroquoian language.
```
katorats "I hunt"
enkatorate "I will hunt"
satorats "you hunt"
ensatorate "you will hunt"
ratorats "he hunts"
enratorate "he will hunt"
```

Based on the above, identify the morphemes for " I, " "he," and "you," and the stem for the verb "hunt". This question is worth 2 points. (The four morphemes mentioned are worth a half-point each.)
2. Answer this question using the Kanien'kéha data provided in question 1. If the stem for "wash" is -anohare-, how would you write "He washes" in Kanien'kéha?

Given In Kanien'kéha, "l" is represented by the morpheme "ne," "he" by "se," and "you" by "kwi." The Answer: stem for the verb "hunt" is "raksa."

1. The following are simplified forms of several words in Kanien'kéha (a.k.a. Mohawk), an Iroquoian language.
```
katorats "I hunt"
enkatorate "I will hunt"
satorats "you hunt"
ensatorate "you will hunt"
ratorats "he hunts"
enratorate "he will hunt"
```

Based on the above, identify the morphemes for " I, " "he," and "you," and the stem for the verb "hunt". This question is worth 2 points. (The four morphemes mentioned are worth a half-point each.)
2. Answer this question using the Kanien'kéha data provided in question 1. If the stem for "wash" is -anohare-, how would you write "He washes" in Kanien'kéha?
3. The table below shows the paradigm for the Czech noun meaning "hero."

	Singular	Plural
Nom.	hrdina	hrdinové
Acc.	hrdinu	hrdiny
Gen.	hrdiny	hrdinu
Dat.	hrdinovi	hrdinum
Inst.	hrdinou	hrdiny
Loc.	hrdinovi	hrdinech
Voc.	hrdino	hrdinové

How many grammatical words are shown in the above paradigm?
4. On the above paradigm showing the Czech word for "hero," there are several examples of syncretism. Please find all of them, and note the number and case of each example.

WA Consider the following English words:

What evidence is there for them being complex? What evidence is there for them being simplex? Which do you think they are?

Recap

- Last week, we introduced derivation, a process by which new lexemes are created.
- We discussed the Right-hand Head Rule.
- We discussed category-changing affixes.
- We explored the rules that govern the types of inputs and outputs of derivational processes.
- We introduced bracketed templates to illustrate derivational processes.

Discussion! (p. 73 q.3)

- Do the following English denominal verbs form a problem for the Right- hand Head Rule for English: encage, enchain, encircle, encourage, enfeeble? (Bear in mind that possible words can form an intermediate stage in word-formation.)

Templates and the Lexicon

- Some words can be understood on the fly.
- Resend 'to send again' - you understand this by knowing what remeans and what send means.
- $\left[\mathrm{re}[\mathrm{X}]_{\mathrm{V}}\right]_{\mathrm{V}}$ - 'to X again' What kind of input does this take?

What kind of output does this give?

- But not all words can be so easily understood. Many have info that doesn't follow right from the template.
- These words need to be stored separately in the lexicon.

What's the lexicon?

Templates and the Lexicon

$$
\begin{aligned}
& \text { German -bar '-able' } \\
& {\left[[\mathrm{X}]_{\mathrm{V}} \text { bar }\right]_{\mathrm{A}} \text { - 'able to be Xed' }}
\end{aligned}
$$

$$
\text { essen 'to eat' } \rightarrow \text { essbar 'able to be safely eaten' }
$$

$$
\text { zahlen 'to pay' } \rightarrow \text { zahlbar 'payable, must be paid' }
$$

$$
\text { halten 'hold, keep' } \rightarrow \text { haltbar 'non-perishable' }
$$

lesen 'to read'
-bar '-able’
lesbar 'able to be read'
"The predictable properties are partially inherited from their base verbs, and partially from the word-formation template for adjectives ending in -bar." (63)
"A morphological template thus coexists with the individual complex words formed according to that template." (63)

Are there English suffixes that provide similar examples?
What kind of outputs does it give?

Constraints

- We've seen input constraints last week (and earlier today). What're some examples?
What's an affix that can only attach to verbs?
What's an affix that can only attach to adjectives?
- These are input constraints because the limitation has to do with what kind of inputs can be used.

Constraints

How do we explain this?
What's the pattern?

- There are also output constraints.

In all grammatical Xen words, X ends with a single obstruent.

- Consider the following affix we saw last week:
$\left[[\mathrm{X}]_{\mathrm{A}} \mathrm{en}\right]_{\mathrm{V}}$ - 'to make [something] X'

blacken	redden		
whiten	strengthen		
harden	weaken		
fasten	quicken		
soften	dampen	\quad	$*$ greenen
:---			
$*$ bluen			
$*$ shinyen			
$*$ dryen			
${ }^{*}$ slowen			
etc.			

An obstruent's a plosive, fricative, or affricate.

Remember: We care about sound, not spelling!

How do we know this is an output constraint and not an input constraint?
soft [soft]
soften [sofən]

- the $[\mathrm{t}]$ is eradicated

Other examples?
moisten soften

Discussion! (p. 74 q.9)

- The English negative prefixes a - and an- borrowed from Greek can both be attached to adjectives. What determines the choice between these prefixes?

```
amoral
atheistic
asexual
```

anarchic
analphabetic
anoxic 'without oxygen'

Constraints

- The choice of an affix can also depend upon the preceding morphemes in the base.
- For example, -ize will be followed by -ation, not -ion

$$
\left[[\text { Xize }]_{\mathrm{V}} \text { ation }\right]_{\mathrm{N}} \quad \text { Other examples? }
$$

$$
\text { realize } \rightarrow \text { realization }
$$

- Similarly, -able takes -ity, not -ness

Doesn't necessarily depend upon able being a suffix - can be part of a simplex word, like stable \rightarrow stability, and able \rightarrow ability.

Constraints

- Other word-formation processes are informed by the internal morphological structure of words.
-What's conversion?
Where you use a word of one category (e.g. N) as another (e.g. V), without any overt affixation.
- What're some examples?
$[\text { text }]_{\mathrm{N}} \rightarrow\left[[\text { text }]_{\mathrm{N}}\right]_{\mathrm{V}} \quad[\text { tax }]_{N} \rightarrow\left[[\text { tax }]_{N}\right]_{\mathrm{V}} \quad[\text { convert }]_{\mathrm{V}} \rightarrow\left[[\text { convert }]_{\mathrm{V}}\right]_{\mathrm{N}}$
- Conversion is an example of derivation "because it serves to coin new lexemes on the basis of existing ones" (57)

Constraints

- Interestingly, $\mathrm{N} \rightarrow \mathrm{V}$ conversion in English applies to simplex and compound nouns, but not suffixed nouns.

Can't be converted to verbs

Can be converted to verbs

master	I will master this material.
tailor	
He tailors his clothing.	
butcher	They butcher the meat.
author	

Constraints

There are natural semantic constraints, too the meaning has to be possible.

- Un- can attach to verbs, but only those verbs that can be undone.
- Can't *unkill, *unring [a bell], *unask, *unswim, * unhammer
- Can unfold, unmake, unlock, undress, unscrew
- Any other examples like this?

Discussion! (p. 74 q.7)

- English has at least the following prefixes with some negative meaning: de-, dis-, in-, non-, and un-. Make a list of the (phonological, syntactic, semantic, and stratal) constraints that each of these prefixes imposes on its base words. What is the division of labour between these five prefixes?

Let's do five breakout groups. Make a list of words with the prefix, and then we'll come back together to see if we can find a pattern.

1.	de-
2.	dis-
3.	in-
4.	non-
5.	un-

de-
dis-
in-
non-
un-

Productivity

- What does it mean for a morphological process to be productive?

Can still be used to make new lexemes or word forms.

- Not all morphological processes that exist are productive. What are some examples?

$$
\text { foot } \rightarrow \text { feet } \quad \text { ox } \rightarrow \text { oxen } \quad \text { actor } \rightarrow \text { actress }
$$

- Even those that are productive are not equally productive.
"The degree of productivity of a word-formation pattern thus refers to the degree to which the structural possibilities of a word-formation pattern are actually used." (68)

Productivity

- Productivity can be informed by culture.

This can be illustrated as follows. Both in German and in Dutch female nouns can be coined by means of suffixation, in German by means of suffixation with -in:
(21) Dozent "teacher" Minister "minister" Professor "professor" Student "student"

Dozent-in "female teacher" Minister-in "female minister" Professor-in "female professor" Student-in "female student"
-in is more productive in German than in Dutch.
-ette and -ess used to be more productive in English than they are now.

Dutch has the same female suffix -in, and some other female suffixes as well. Yet, it does not have equivalent words for these German female nouns.

Productivity

- Sometimes, two different morphemes with the same meaning compete. What are the two mentioned in the text?

```
-ity and -ness
```

- We can examine productivity by consulting a corpus.
- What is a corpus? A body of texts.
"The king of the world is a crownless king."
- What is a type? A given word form.
- What is a token? A given instance of that word form.
-What is a hapax? A novel type that
appears only once.

> Therefore, one might
define the degree of productivity P of a particular morphological process as the proportion between the number of hapaxes of that type $\left(n_{l}\right)$ to the total number of tokens N of complex words of that type in the sample (Baayen 1992: 115):
(22) $\mathrm{P}=n_{l} / \mathrm{N}$

The use of P as a measure of productivity is illustrated by the data in Table 3.1. These data are from the English Cobuild Corpus, a corpus of 18 million word forms of British English. N stands for the number of word tokens ending in these affixes, and V for the number of types. The table shows that the number of tokens in -ity is higher than that of the tokens in -ness. However, the number of types with -ness is higher, and-what is more important-the number of hapaxes as well. Hence, the suffix -ness is more productive than -ity. p. 70

Table 3.1. Productivity measure for the English suffixes -ity and -ness

Affix	\mathbf{N}	\mathbf{V}	\mathbf{n}_{1}	\mathbf{P}
-ity	42,252	405	29	0.0007
-ness	17,481	497	77	0.0044

For next week...

- Midterm! Will be sent out this weekend.
- Read the first half of the chapter on compounding.

